

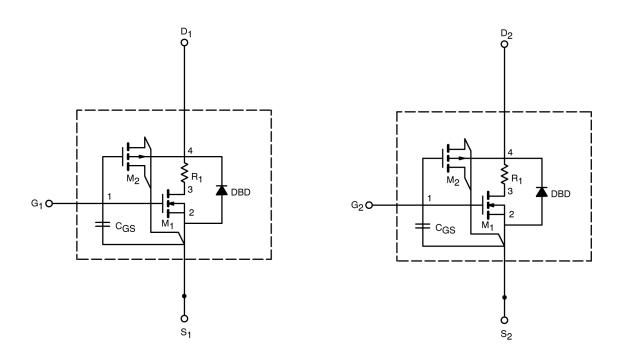
SPICE Device Model Si4946EY

Vishay Siliconix

Dual N-Channel 50-V (D-S) Dual MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- · Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model schematic is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0-to-5V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

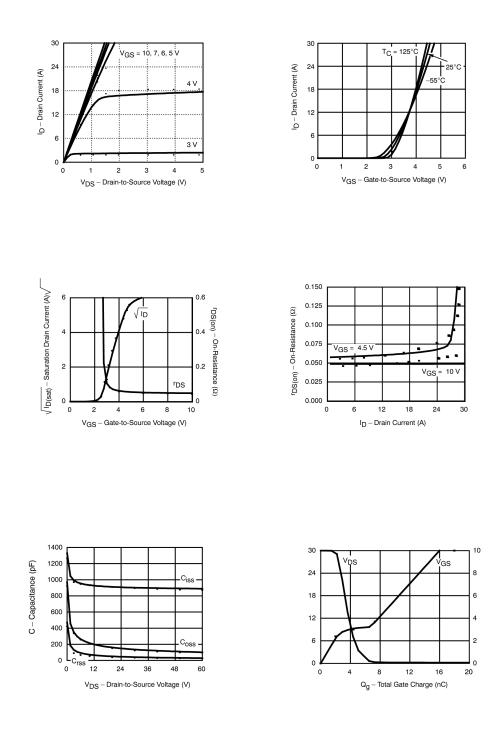
SUBCIRCUIT MODEL SCHEMATIC

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

SPICE Device Model Si4649EY

Vishay Siliconix

SPECIFICATIONS (T _J = 25° C UNLESS OTHERWISE NOTED)				
Parameter	Symbol	Test Condition	Measured Data	Unit
Static	·			
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	1.75	V
On-State Drain Current ^a	I _{D(on)}	V_{DS} = 5 V, V_{GS} = 10 V	100	А
Drain-Source On-State Resistance ^a	r _{DS(on)}	V_{GS} = 10V, I_{D} = 4.5 A	0.048	Ω
		V_{GS} = 4.5V, I _D = 3.9 A	0.058	
Forward Transconductance ^a	g _{fs}	V_{DS} = 15 V, I_{D} = 4.5 A	13	S
Diode Forward Voltage ^a	V _{SD}	$I_{\rm S}$ = 2 A, $V_{\rm GS}$ = 0 V	0.81	V
Dynamic ^b				
Total Gate Charge ^b	Qg	V_{DS} = 30 V, V_{GS} = 10 V, I_{D} = 4.5 A	16	nC
Gate-Source Charge ^b	Q _{gs}		4	
Gate-Drain Charge ^b	Q _{gd}		3	
Turn-On Delay Time ^b	t _{d(on)}	$V_{DD} = 30 \text{ V}, \text{ R}_{\text{L}} = 30 \Omega$ $I_{\text{D}} \cong 1 \text{ A}, \text{ V}_{\text{GEN}} = 10 \text{ V}, \text{ R}_{\text{G}} = 6\Omega$ $I_{\text{F}} = 2 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$	10	ns
Rise Time ^b	tr		12	
Turn-Off Delay Time ^b	t _{d(off)}		22	
Fall Time ^b	t _f		28	
Source-Drain Reverse Recovery Time	t _{rr}		35	


Notes a. For design aid only; not subject to production testing. b. Pulse test; pulse width \leq 300 $\mu s,$ duty cycle \leq 2%.

SPICE Device Model Si4946EY

Vishay Siliconix

COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)

Note: Dots and squares represent measured data.